

Background: Domain Adaptation

Standard domain adaptation

- Source domain S, with images X_s and labels Y_s drawn from p_s(x,y)
- Target domain T, with images X_{τ} unlabeled drawn from $p_{\tau}(x,y)$
- Minimize discrepancy between distributions by learning source and target representations, M_{s} and M_{t} , and classifier C

$$M_{s}, C \leftarrow \arg\min_{\substack{M_{s}, C}} L_{cls}(C(M_{s}(X_{s})), Y_{s})$$
$$M_{t} \leftarrow \arg\min_{\substack{M_{t}}} d(M_{s}(X_{s}), M_{t}(X_{t}))$$
Distribution distance

Problem Statement

Problem

- Adapting from one single source to one single target is limiting
- Incremental adaptation alone cannot recover good performance on past domains
- **Goal**: adapt between continuously shifting domains, while avoiding catastrophic forgetting

Adapting to Continuously Shifting Domains Andreea Bobu¹, Eric Tzeng¹, Judy Hoffman¹, Trevor Darrell¹

¹Berkeley Artificial Intelligence Research, University of California Berkeley

Classifier Distribution Distance

Continuous domain adaptation

- Source domain S, with images X_s and labels Y_s drawn from $p_s(x,y)$
- Target domains T_i , with images X_{ti} unlabeled drawn from $p_{ti}(x,y)$
- Source domain is similar to the target domain at time t_0
- Target domain is smoothly varying
- p_{t0} is more similar to p_s than p_{t1} is to p_s

Solution: incrementally adapt to new domains with a replay loss to maintain performance on past domains

CUA Framework

Iterative adaptation with subsampling

- Initialize M_{s} like in the standard domain adaptation setting
- Subsample α -fraction dataset $\{X_{p}, Y_{p}\}$ at every stage
- Optimize the sequential unsupervised adaptation update while matching sampled past data with the replay loss

$$M \leftarrow M_{t_{i-1}}; \{X_p, Y_p\} \leftarrow$$

$$\underline{M_t} \leftarrow \arg\min_{M} \{d\left(\underline{M_s}(X_s), M(X_{t_i})\right)\}$$

Continuous Unsupervised Adaptation

subsample($\{X_s, Y_s\}, \alpha$)

MNIST Results

0° 45°	90°		135°	1	9 80°	225	0	270°	€ 115°
Method	0 °	45°	90 °	135°	180 °	225°	270°	315°	Average (%)
Source	99.2	61.7	17.2	29.1	39.4	29.8	15.8	51.7	43.0 ± 0.8
ADDA	80.8	70.4	20.8	28.6	42.1	40.2	23.8	41.2	43.5 ± 1.2
DANN	98.6	64.7	19.9	28.4	41.4	32.9	24.2	67.3	47.2 ± 1.6
CUA - no replay (Ours)	51.6	15.1	32.7	38.7	30.4	27.1	73.6	96.0	45.7 ± 1.4
CUA (Ours)	90.4	84.4	82.0	77.3	85.8	88.2	92.7	96.5	$\textbf{90.4} \pm \textbf{1.6}$
Target Supervised (Oracle)	96.9	96.7	96.8	97.4	96.6	96.5	96.8	96.4	97.0

Atari Results

- Atari game pong with base model ACKTR • Continuous shift represented by color inversion $\theta \in [0,1]$, where every pixel x_{orig} is inverted into x_{inv}

	Inversion factor θ				
Method	0.0	0.1	0.2	0.3	
Source only	21.0	21.0	17.6	-2.28	
MMD (Long & Wang, 2015)	21.0	21.0	17.0	15.9	
CUA (Ours)	21.0	21.0	21.0	21.0	
Target with reward (Oracle)	21.0	21.0	21.0	21.0	

• 60000 training images of handwritten digits, 10000 test images Continuous shift represented by 45° rotations • Source domain 0°, Target domains every 45° after

$$x_{nv} = (1 - \theta) * x_{orig} + \theta * (1 - x_{orig})$$