
Learning Perceptual Concepts by Bootstrapping from Human Queries

Andreea Bobu1, Chris Paxton2, Wei Yang2, Balakumar Sundaralingam2,
Yu-Wei Chao2, Maya Cakmak2,3, and Dieter Fox2,3

Abstract— Most robot tasks can be thought of as relating
one or more objects, and learning new tasks by necessity
involves teaching the robot new concepts relating objects to one
another. However, learning new concepts that operate on high-
dimensional data – like that coming from a robot’s sensors – is
impractical, because it requires an unrealistic amount of labeled
human input. In this work, we observe that by using a simulator
at training time we can get access to significant privileged
information – things like object poses and bounding boxes –
that allows for learning a low-dimensional variant of the concept
with much less human input. The robot can then use this low-
dimensional concept to automatically label large amounts of
high-dimensional data in the simulator. This enables learning
perceptual concepts that work with real sensor input where no
privileged information is available. We evaluate our Perceptual
Concept Bootstrapping (PCB) approach by learning spatial
concepts that describe object state or multi-object relationships.
We show that our approach improves sample complexity when
compared to learning concepts directly in the high-dimensional
space. We also demonstrate the utility of the learned concepts
in motion planning tasks on a 7-DoF Franka Panda robot.

I. INTRODUCTION

Robots are increasingly expected to perform tasks in
human-centric environments, from helping with household
chores to cleaning up the office. In order to align robot
performance with their unique needs, people should be able
to teach robots new concepts: task-relevant aspects relating
objects in the environment that the robot should optimize for.
For example, in Fig. 1 the user wants the robot to place the
mug near the can. Before the robot can understand and plan
for this behavior, the person has to first teach the robot what
the concept of near means in this context. In addition, this
concept must be expressible in terms the robot understands:
the high-dimensional input from its sensors.

To handle this high-dimensional data, classical approaches
extract geometric information, like object poses and bound-
ing boxes, and learn the concept on top of that [1], [2],
[3]. Extracting geometric information transforms the sensor
input into a lower dimensional space, allowing the robot
to learn the concept quickly even from limited human
input. Unfortunately, recovering accurate geometries from
real-world sensor data is challenging: even modern pose
estimators [4], [5], [6], [7] struggle when confronted with the
partial occlusions or novel objects that appear in open-world
environments [8]. As an alternative, recent deep learning

1 EECS at UC Berkeley abobu@berkeley.edu
2 NVIDIA Robotics, USA {cpaxton, weiy, balakumars,

ychao, dieterf}@nvidia.com
3 University of Washington mcakmak@cs.washington.edu
We thank Weiyu Liu for an aligned version of the Shapenet dataset.

𝜙∗(𝑠)

𝑠

𝑔(𝑜")

𝑜"

𝜙∗

𝑓(𝑜#)
𝑔

𝑜#

1. Query human about the concept

2. Learn low-dimensional concept g

3. Label high-dimensional data for f

Fig. 1: (Left) The robot moves the cup to be near the can
using our learned concept. (Right) We propose a new approach
whereby the robot collects labels φ∗ about the concept from
the human (top), learns a low-dimensional concept g on the
privileged information space (e.g. poses and bounding boxes)
(middle), then uses it to label data necessary for learning the
high-dimensional concept f (bottom). Additional qualitative re-
sults available at https://sites.google.com/nvidia.
com/active-concept-learning.

methods attempt to learn concepts directly from the sensor
data, without any pre-processing step, by obtaining human-
labeled examples of the concept [9], [10]. These methods
are usually trained in simulation, where a variety of objects
can be manipulated in diverse configurations, resulting in
better generalization than classical approaches [8], [11], [10].
However, because of the high dimensionality of the input
space, the robot needs a unreasonably large data set of
human-labeled examples, making a new concept impractical
and cumbersome for a human user to teach.

In this paper, we propose getting the best of both worlds:
learn concepts from high-dimensional sensor data with lim-
ited human labeling effort. We observe that, while the
robot only has access to the high-dimensional sensor inputs
during task execution, at training time the simulator contains
privileged information akin to the geometries that classical
approaches tried to compute. In the example in Fig. 1,
this privileged information could be the two object poses
– a much simpler representation than their high-dimensional
point cloud equivalent. With this, the robot can learn a low-
dimensional variant of the concept on the privileged space.

Our key idea is to treat this low-dimensional concept as
a labeler and use it to automatically label high-dimensional
sensor data in the simulator. This allows us to generate a
large, diverse, and automatically labeled dataset for training
a high-dimensional concept which can be directly applied

ar
X

iv
:2

11
1.

05
25

1v
2 

 [
cs

.R
O

] 
 1

1 
M

ar
 2

02
2

https://sites.google.com/nvidia.com/active-concept-learning
https://sites.google.com/nvidia.com/active-concept-learning


to real-world settings without additional human input. Since
these low-dimensional spaces train faster and are often
semantically meaningful, this approach also allows for richer
human interaction, such as active learning or directly asking
if a dimension is relevant for the concept, that can further
accelerate learning. We showcase our method PCB in exper-
iments both in simulation and on a real Franka Panda robot.

II. RELATED WORK

Concept learning on low-dimensional representations.
Traditionally, concepts are hand-engineered by the system
designer prior to robot deployment [12], [13], [14]. Unfor-
tunately, by relying entirely on prior specification, the robot
cannot adapt its task execution to an end user’s needs. Recent
works address this problem by allowing the robot to either
infer concepts from task demonstrations [15], [16], [17] or
learn them directly from the human [18], [19]. While these
methods enable the robot to learn after deployment, they have
been primarily demonstrated on low-dimensional spaces.

Prior work bypasses the high-dimensional learning prob-
lem by extracting low-dimensional geometric information
akin to our privileged space (object poses and bounding
boxes) and learning relational concepts on top of it [1],
[2], [3]. However, recovering accurate geometries from real-
world sensor data is challenging: even modern pose estima-
tors [4], [5], [6], [7] struggle with the partial occlusions or
novel objects that appear in open-world environments [8]. As
such, we seek to learn concepts operating directly on high-
dimensional input, without any intermediary pre-processing.
Concept learning on high-dimensional sensor data. Deep
learning handles high-dimensional data by using a function
approximator to learn low-dimensional embeddings, hoping
to capture salient aspects of the environment. Deep inverse
reinforcement learning (IRL) and imitation learning ap-
proaches, in particular, use demonstrations to automatically
extract behavior-relevant representations [20], [21], [22].
Unfortunately, to work reliably on high-dimensional inputs,
these methods require a large amount of data from the human
to generalize outside of the training distribution [23], [24].

Recent work in the auto-encoder community suggests that
we can improve data efficiency by learning an unsupervised
disentangled latent space [25], [26], [27]. These models are
trained without any human input, hence the learned embed-
dings for the factors of variation in the high-dimensional data
do not necessarily map to salient concepts. To address this,
the work in [28] proposes adding some supervision by using
weakly labeled examples of many concepts. Unfortunately,
this approach requires the user to pre-define a comprehensive
set of concepts and label a large amount of data for training.
While these methods are aligned with our goals of capturing
important aspects of robotic tasks, they are complementary
in that they focus on learning latent embeddings of the high-
dimensional data, not concrete concepts.

Instead of learning a universal representation, other
work learns specific relational concepts directly from high-
dimensional data data [9], [10]. In particular, these methods
learn from segmented object point clouds, which are easy to

obtain and have successfully been used in other perception
pipelines [29]. The disadvantage of this approach is that it
still requires large amounts of data (e.g. tens of thousands
of labeled examples), making it unsuitable for learning the
concept from a human. We look at how we can quickly and
efficiently teach similar high-dimensional concepts that the
robot can use for planning.

III. METHOD

Our goal is to learn concepts that are useful for robot
manipulation tasks in high-dimensional input spaces, like
segmented object point clouds. We assume that the robot
may query a human for labeled examples of the concept,
but, we wish to learn these concepts with as few human
labels as possible. As training high-dimensional concepts is
data intensive [9], [10], we propose to learn the concept first
on a simpler, lower dimensional space, which we can use to
label as much high-dimensional data as needed to train the
concept in the target high-dimensional sensor space.

A. Preliminaries

Formally, a concept is a function mapping from input state
to a scalar value, φ(s) : Rd → [0, 1], representing how much
concept φ is expressed at state s ∈ Rd. In our setting, we
assume the human teacher already knows the ground truth
concept φ∗, and can, therefore, answer queries about it.

At training time the robot has access to the entire state
s, but at test time it only receives high-dimensional obser-
vations oh ∈ Rh given by a transformation of the state
F(s) : Rd → Rh. For example, in Fig. 1, s captures the
objects’ and robot’s pose, mesh, color, etc, whereas oh is
the segmented point cloud of the scene from a fixed camera
view. The robot seeks to learn a high-dimensional concept
mapping over these observations φh(oh) : Rh → [0, 1], so
that it can use it in manipulation tasks later on.

To do so, we assume the robot can ask the person for state-
label examples (s, φ∗(s)), forming a dataset {s, oh, φ∗(s)} ∈
Dφ. Since the high-dimensional observation oh directly cor-
responds to state s, this dataset has the crucial property that
the same label φ∗(s) applies to both s and oh:

φ∗(s) = φh(oh),∀s, oh = F(s) . (1)

From here, one natural idea to learn φh is to treat it as
a classification or regression problem and directly perform
supervised learning on (oh, φ

∗(s)) pairs. Unfortunately, to
learn a meaningful decision boundary, this approach would
require very large amounts of data from the person, making
it impractical to have a user teach a new concept.

Instead, we assume the robot can use privileged informa-
tion in the form of a low-dimensional observation ol ∈ Rl, as
given by a transformation G(s) : Rd → Rl. We think of this
information as privileged because the robot has access to it
during training but not at task execution time. For instance, in
Fig. 1, ol only needs the object poses to determine whether
one object is near the other. The set of collected human
examples then includes the low-dimensional observation:
{s, ol, oh, φ∗(s)} ∈ Dφ, which allows the robot to learn a



low-dimensional variant of the concept, φl(ol) : Rl → [0, 1],
by extending the property in Eq. (1):

φ∗(s) = φh(oh) = φl(ol),∀s, oh = F(s), ol = G(s) . (2)

We hypothesize that learning the low-dimensional concept
φl on top of the privileged information should require less
human input than learning φh directly from high-dimensional
data. Furthermore, Eq. 2 allows the learned φl to act as a
labeler, bypassing the need for additional human input. As
such, we break down the concept learning problem into two
steps: leverage the human queries to learn a low-dimensional
concept φl, then use it to ultimately learn the original
high-dimensional φh. Note that instead of learning φl, we
could hand-craft it. However, hand-engineering concepts is
challenging and time consuming, even for an expert, and
virtually not a possibility for untrained end users.

B. Learning a low-dimensional concept

To learn φl, the robot first needs to query the human for
Dφ. To ensure the robot can learn the concept with little
data, we want a query collection strategy that balances being
informative and not placing too much burden on the human.
We, thus, consider two types of input that are easy to provide
and commonly used in the human-robot interaction (HRI)
literature [30]: demonstration queries and label queries.
Since users may struggle to label continuous values, we
simplify the labeling scheme to consist of 0 (negative) or 1
(positive) for low and high concept values. Note that despite
the labels being discrete, they can still be used to learn a
model that predicts continuous values.

Demonstration queries, or demo queries, involve creating
a new scenario and asking the human to select states s that
demonstrate the concept and label them according to φ∗.
For example, for the near concept in Fig. 1, the person
could place the mug near the plate and label the state 1.0,
symbolizing a high concept value. Here, the robot can only
manipulate the constraints of the scenario (e.g. which objects
are involved) and the human has complete control over the
selection of the rest of the state. This method, thus, requires
an interface that allows the person to directly manipulate the
state of the environment and label it.

Under the assumption of a pedagogic human, demonstra-
tion queries provide the robot with an informative dataset of
examples that should allow it to learn the low-dimensional
concept quickly. Unfortunately, this data collection method
can be quite slow due to the fact that the person has to spend
time both deciding on an informative state and manipulating
the environment to reach it. This makes it challenging to use
in data intensive regimes (like when training φh from the
get-go) but ideal in the low-data ones we are interested in.

Label queries are a less time-consuming alternative where
the robot synthesizes the full query state s, and the person
simply has to label it as 0 or 1. This type of query is much
easier and faster for the person to answer, but places the
burden of informative state generation entirely on the robot.
Importantly, simply randomly sampling the state space might
not result in the most informative dataset for the concept

of interest. For example, for a concept like above, placing
the objects at random locations in the scene will rarely
result in examples where the two are above one another. For
this reason, we additionally employ an active learning [31]
approach to aid the robot in selecting more useful queries.

Following the batch active learning framework [32], the
robot interleaves asking for queries with learning the low-
level concept φtl from the t examples received so far. This
way, the robot can use the partially-learned φtl to inform the
synthesis of a more useful batch of queries. We enable the
robot to choose among three query synthesis strategies: 1.
random: randomly generate a state s ∈ Rd; 2. confusion: pick
the state that maximizes confusion, or, in other words, is at
φtl(s)’s decision boundary, i.e. s = argmins(‖φtl(s)−0.5‖);
3. augment: select a state that was previously labeled as a
positive (or negative, whichever is rarer) and add noise to it.

A random query serves as a proxy for exploring novel
areas of the state space, and we generate it by randomizing all
the parameters of the state in a simulator (e.g. object meshes,
poses, etc). The confusion query disambiguates areas of the
state space where the current concept φtl has high uncertainty,
and we optimize it using the cross-entropy method [33], [34].
The augment query is useful for concepts where positives (or
negatives) are rarer, like in the above example.

Focusing on the low-dimensional concept first offers us
the benefit of a richer human interaction via active learn-
ing, which would be difficult to achieve with the high-
dimensional variant because of its longer training cycles.
Another advantage is that, while the transformation F cannot
be modified because the robot is constrained to operate on
oh at test time, we have more flexibility over what G and
ol can be. We exploit this with a third type of human input
called feature queries [30].

Feature queries typically involve asking the person
whether an input space feature is important or relevant for
the target concept. However, this query is only useful in as
much as the feature itself is meaningful to the human. As
such, we adapt feature queries and ask the person a few
intuitive questions about the concept such that the answer
informs the choice of the transformation G. For example, a
negative answer to the question “Does the size of the objects
matter?” lets the robot know that ol does not benefit from
containing object bounding box information. These queries
let us choose an appropriate G, which can further speed up
the learning of φl.

Given a (possibly partial) dataset of labeled human exam-
ples Dφ, the robot can now train a low-dimensional concept
φl. To allow for arbitrarily complex non-linear concepts, we
approximate φl by a neural network g(ol;ψ) : Rl → [0, 1],
where ψ denotes the parameters to learn. We treat concept
learning as a classification problem, and train g on the
(ol, φ

∗(s)) examples in Dφ using a binary cross-entropy loss.

C. Learning a high-dimensional concept

Learning a high-dimensional concept requires a large
amount of labeled high-dimensional data. Generating this
dataset is a two-step process: the robot needs to synthesize a



large and diverse set of states s, which it then has to acquire
labels for. However, as opposed to the low-dimensional case,
this dataset need not be directly labeled by the human: the
learned low-dimensional concept itself can act as a labeler.

Since at training time the robot has access to the simulator,
for the data synthesis step we randomly explore the state
space, much like we did for the random queries. Using the
property in Eq. (2), we can use the low-dimensional concept
φl to automatically label the states, generating the dataset
{s, ol, oh, φl(ol)} ∈ Dφl

. Given Dφl
, the robot can now learn

a high-dimensional concept φh. Once again, we approximate
φh by a neural network f(oh; θ) : Rh → [0, 1]. We train θ
via classification on the (oh, φl(ol)) examples in Dφl

using
a simple cross-entropy loss.

D. Implementation details

We used a multilayer perceptron (3 layers, 256 units)
and a standard PointNet [35], [36] to represent the low-
and high-dimensional concepts, respectively. Our concepts
involved relationships between objects, so we represented the
high-dimensional observation oh with the relevant objects’
segmented point clouds from the camera view, and the low-
dimensional one ol with object poses and bounding boxes.

For data generation, we modified the objects in the
ShapeNet dataset [37] such that they are consistently aligned
and scaled. When synthesizing states s ∈ Rd, we spawned
pairs of two objects in the Isaac Gym simulator [38] and
manipulated their poses, as well as the camera pose along the
table plane. This process resulted in a variety of states with
possibly occluded objects, from many camera views. Since
our method allows us to generate as much simulated data as
desired, our hope is to generalize to real-world conditions
like other simulation-based methods do [9], [39], [40].

IV. EXPERIMENT: LEARNING PERCEPTUAL CONCEPTS
BY BOOTSTRAPPING FROM HUMAN QUERIES

In this section, we compare our label-efficient perceptual
concept learning method PCB to a baseline that learns di-
rectly from high-dimensional input. PCB relies on a human-
trained low-dimensional concept g, for which we perform an
extensive sensitivity analysis in Sec. V.

A. Experimental Design

Throughout our experiments, we synthesize queries by
manipulating pairs of objects: a stationary anchor and a
moving object, which is related to the anchor by our concept.
We investigate 9 spatial concepts:

1) above: angle between the objects’ relative position and
the world z-axis;

2) abovebb: intersection area of the two objects’ bounding
box projections on the world xy-plane;

3) near: inverse distance between the objects;
4) upright: angle between the moving object’s z-axis and

the world’s;
5) alignedhoriz: angle between the objects’ x-axes;
6) alignedvert: angle between the objects’ z-axes;

Fig. 2: Visual representation of the 9 concepts learned with our
method (icon in the top left of each box). The anchor (green)
is joined by examples of the moving object represented as either
partial object point clouds (middle: upright, alignedhoriz, alignedvert)
or object point cloud centers (top: above, abovebb, near; bottom:
forward, front, top). We color predicted positive examples in red,
and negative ones in black. For concepts defined with respect to
the world coordinate frame, we additionally plot the frame.

7) forward: angle between the anchor’s x-axis and the
objects’ relative position;

8) front: angle between the anchor’s x-axis and the ob-
jects’ relative position;

9) top: angle between the anchor’s z-axis and the objects’
relative position;

For evaluation purposes, our ground truth concept imple-
mentations cut off the angles in above, upright, alignedhoriz,
alignedvert, front, and top after 45◦ and the distance in near
after 0.3m, then normalize all concept values between 0 and
1. Fig. 2 showcases qualitative visualizations of the concepts.

Notably, some of the concepts involve object affordances
(upright, alignedhoriz, alignedvert, forward, front, top). For
those, only a subset of the objects are applicable (e.g. a
mug has a front, but a box doesn’t), so we selected object
subsets for each concept accordingly (see App. VII-A). By
default, the privileged space consists of the object poses,
relative pose, positional difference, and bounding boxes.

We compare PCB to a baseline that learns f directly from
the queries. For PCB, we chose to use the low-dimensional
concepts g trained using feature and label queries collected
with the confrand and augment active learning strategies
together. We show in Sec. V that this was the best performing
g with the overall cheapest type of human input, and results
with other variants of g follow similar trends (see App. VII-
B). We use the concepts g to label a large set of 80,000
training states, resulting in Dφl

, then train f using Dφl
. Since



0

50

100 above abovebb near

0

50

100

A
cc

ur
ac

y

upright alignedhoriz alignedvert

100 500 10000

50

100 f orward

100 500 1000
Number of Queries

f ront

100 500 1000

top

PCB Baseline

Fig. 3: Classification accuracy on a held-out test data set (Classifica-
tion Accuracy), for models trained on a varying number of queries.
Concepts trained using our method (orange) correctly classify at
least 80% of the test data after the first 500 queries in most cases.
Meanwhile, the baseline (gray) struggles to perform better than
random, especially on the last six concepts that involve affordances.

the baseline takes a very long time to train, it is not suitable
for active learning. As such, in our experiments the baseline
uses random label queries.

We train f with each strategy and a varying number of
queries, and report two metrics: 1) Classification Accuracy:
how well the concepts can predict labels for a test set of
states, and 2) Optimization Accuracy: how well the states
induced by optimizing these concepts fare under the true φ∗.

For Classification Accuracy, we use φ∗ to generate a test
set Dtest of 20,000 state-label pairs such that they have an
equal number of positives and negatives. This way, we probe
whether the learned concepts perform well on both labels and
don’t bias to one. We measure f ’s accuracy as the percentage
of datapoints in Dtest predicted correctly.

For Optimization Accuracy, we sample 1,000 states Sopt
with a concept value of 0, and use the learned concepts
to optimize them into a new set of states S ′opt. We do
so by finding a pose transform on the moving object that
maximizes the concept value, and use the cross-entropy
method [33]. Importantly, since this is happening at test time,
we use the high-dimensional observation of the state oh to
perform the optimization. We evaluate S ′opt under φ∗ and
report the percentage of states that are labeled as 1. We
present results for an arbitrarily chosen fixed seed.

B. Qualitative results

Fig. 2 showcases the 9 concepts trained using PCB. For
every concept, we display the anchor object in green (if
applicable), together with positive and negative examples of
the concept. For above and abovebb the positive examples
above the anchor are sparse, which could make learning
challenging from a data diversity perspective: if the robot
doesn’t query for enough positive examples, it won’t be
able to learn a meaningful decision boundary for these
concepts. In contrast, near has a balanced mix of positives
and negatives, making it a simpler concept to learn. The
remaining six concepts all involve affordances (bowl upright,
spoon horizontally aligned with scissors, bottle vertically

0

50

100 above abovebb near

0

50

100

A
cc

ur
ac

y

upright alignedhoriz alignedvert

100 500 10000

50

100 f orward

100 500 1000
Number of Queries

f ront

100 500 1000

top

PCB Baseline

Fig. 4: Accuracy when optimizing object poses based on the learned
concepts (Optimization Accuracy). Our method (orange) produces
satisfactory poses for most concepts, as opposed to the baseline
(gray) which sometimes cannot even surpass 10% performance.

aligned with bottle, cube forward of hammer, in front of
the hammer, and atop the kettle), which would be difficult
to capture with limited data: a method that learns directly
from point clouds would need large amounts of data to learn
concepts describing functionality across a plurality of objects
and camera views. As seen in the figure, PCB handles these
challenges gracefully, and we will see how this behavior
compares to the baseline in the quantitative results.

C. Quantitative analysis

Fig. 3 shows Classification Accuracy results. The base-
line actually performs well for above, abovebb, and near,
eventually reaching 70% performance. We think this happens
because for these concepts it is easy to infer the neces-
sary privileged information just from the positions of the
point clouds. The other six concepts involve affordances
in addition to position information, which is much more
challenging to capture with little data. As a result, the
baseline cannot achieve performance better than random. In
contrast, our method, which is able to generate thousands of
high-dimensional training data points, can successfully learn
these kinds of concepts, correctly classifying at least 80%
of the test data after the first 500 queries in most cases. In
Fig. 4, Optimization Accuracy results tell a similar story. Our
concepts can be optimized successfully with an accuracy of
over 50%, meaning that we would be able to find positions
for objects to satisfy these concepts [9]. Meanwhile, several
baseline concepts have a success rate barely above 10%.

V. ANALYSIS: LEARNING LOW-DIMENSIONAL CONCEPTS
FROM DIFFERENT TYPES OF HUMAN QUERIES

In the previous section, we saw how our method, given a
low-dimensional concept learned from human input, can out-
perform the baseline learning directly from high-dimensional
sensor data. We now analyze what are the best strategies
for learning low-dimensional concepts from human input.
We seek to answer the following: Q1: Does querying via
demonstration – the most informative type of query but also
the most expensive – benefit learning when compared to
random label queries? Q2: Does modifying the privileged



50

75

100 above abovebb near

50

75

100

A
cc

ur
ac

y

upright alignedhoriz alignedvert

100 500 100050

75

100 f orward

100 500 1000
Number of Queries

f ront

100 500 1000

top

Random Label Demo Feature+Random Label Feature+Demo

Fig. 5: Comparing different query and input space strategies. Demo
queries outperform random label for concepts with few positives,
and feature queries improve learning speed.

information space via feature queries speed up learning? Q3:
Can we choose label queries – the cheaper version of demo
queries – that are more informative than random via active
learning? Q4: How does labeling noise affect the quality of
the learned concepts?

A. Benefits of Demonstration, Label, and Feature Queries

Our first experiment compares the three types of human
queries across two dimensions: the query selection strategy
and the privileged input space. For the former, while the
robot could randomly synthesize states and ask the human
to label them (i.e. random label queries), for some concepts
such a strategy would rarely find states with positive concept
values. In contrast, demonstration queries allow the human
to select the states themselves, so they can balance the
amount of positives and negatives the data set contains
to be informative. As for the privileged input space, by
default it contains many features that are correlated with
one another or irrelevant to some concepts altogether. These
redundant dimensions can make it more difficult to learn the
concept. Feature queries, with just a few simple and intuitive
questions, can eliminate some dimensions of the input space
that are unnecessary.

To answer Q1 and Q2, we use a 2 × 2 factorial design. We
manipulate the query strategy (random label and demo), and
the input space strategy (feature and no feature). For both
query strategies, we randomly generate a dataset of labeled
states as described in Sec. III-D, and simulate human input
by sampling examples randomly for random label or in a
way that balances the positives and negatives for demo. Thus,
the practical difference is in the positives-to-negatives ratio:
while for random label that may be low for certain concepts
(other than near and forward the average ratio is 0.08), for
demo it should be close to 1.

For feature, we ask three intuitive questions: F1. Does the
concept concern a single object? F2. Does the concept care
about the objects’ absolute poses or their relative one? F3.
Do the object sizes matter? F1 discards dimensions from the
redundant object (useful for concepts like upright). F2 gets
rid of correlated features (absolute or relative pose). F3 drops
bounding box information if the concept doesn’t require it.

50

75

100 above abovebb near

50

75

100

A
cc

ur
ac

y

upright alignedhoriz alignedvert

100 500 100050

75

100 f orward

100 500 1000
Number of Queries

f ront

100 500 1000

top

Random
Random+Augment

Confusion
Confusion+Augment

Confrand
Confrand+Augment

Fig. 6: Comparison amongst active labeling and positives selection
strategies. Confrand is the most consistently beneficial strategy, and
Augment boosts performance, especially in low data regimes.

After training a concept network g, we compare it to the
ground truth φ∗. We use a similar metric to Classification
Accuracy from Sec. IV: we measure g’s percentage of
datapoints in Dtest predicted correctly.

In Fig. 5, we show results with varying amounts of queries
from 100 to 1000. Comparing the solid lines, we immediately
see that, for most concepts, demo queries perform much
better than random label queries. The only concepts where
this trend doesn’t hold are forward and near, which are con-
cepts where random sampling can already easily find many
positives. This result stresses that having enough positives
is crucial for learning good concepts. We can also compare
the effect of feature queries: whether we use demo or label
queries, feature queries considerably speed up learning, and
this result holds across all 9 concepts. Another observation
is that the combination of demo and feature queries plateaus
in performance after about 200-300 queries, suggesting that,
although each query requires more human time, the teaching
process altogether might be shorter.

B. Active Query Labeling

In Sec. V-A, we saw that demonstration queries substan-
tially benefit concept learning when compared to random
label queries. Unfortunately, demo queries are also very time-
consuming to collect1, which only makes them feasible in
low-data regimes. In this section, we tackle Q3 and explore
whether we can make label queries more informative by
employing active learning techniques, rather than simply ran-
domly selecting them. This way, we can have the benefits of
both informative query generation and easy label collection.

We use a 3 × 2 factorial design where we vary the active
strategy (random, confusion, and confrand) and the positives
selection (augment and no augment). As described in Sec.
III, random generates a query state randomly and confusion
picks a state at the decision boundary of the currently learned
concept. We also introduce confrand, which randomly selects
between the two strategies, to balance exploration of new
areas and disambiguation of the current concept. With an

1Empirically, an expert user can label 100 queries in 2 minutes, but needs
10 minutes for the same amount of demo queries.



40

70

100 above abovebb near

40

70

100

A
cc

ur
ac

y

upright alignedhoriz alignedvert

100 500 100040

70

100 f orward

100 500 1000
Number of Queries

f ront

100 500 1000

top

0% 1% 5% 10% 25% 50%

Fig. 7: Comparison for different labeling noise levels. Our method
can withstand reasonable noise levels around 1-10%

augment positives selection, for every query the method also
randomly chooses whether to exploit the space of positives it
has found so far or just go with the selected active strategy.
We use a batch size of 100. We train g with each strategy and
varying number of queries, and report accuracy on Dtest.
Analysis. In Fig. 6, we show results with increasing number
of queries across the 6 total label query selection strate-
gies. Right off the bat, we see that active learning helps
more the harder it is to find positives. For concepts like
forward or near, random label queries do well because
the positive-to-negative ratio is already high. For all other
concepts, however, active learning helps considerably, certain
techniques more than others. A general trend is that using
augment queries outperforms not using them, especially in
lower data regimes, confirming our intuition that finding
positives earlier on improves learning. Amongst random,
confusion, and confrand, we don’t see a clear winner for
all concepts, but confrand, the combination of novelty and
uncertainty exploration, seems to perform the best across. It
is encouraging to see that the performance can reach 80%
accuracy after the first 500 queries, which would require a
mere 10 minutes of human labeling time.

C. Noise Ablation in Human Query Labeling

Until now, we assumed the simulated human answered the
queries perfectly. As this is not necessarily going to be the
case for novice users, we examine Q4, how labeling noise
affects our concept learning results. We do this by varying the
noise level with 6 levels: 0%, 1%, 5%, 10%, 25%, and 50%.
A “noisy” query has its label flipped. 50% is equivalent to
a random labeler. We train g by adding varying noise levels
to the queries and report accuracy on Dtest.

Fig. 7 reveals that, unsurprisingly, the noisier the queries,
the worse the learned concept performs. While unrealistic
noise levels like 25% or 50% severely worsen the quality
of the learned concepts, our method seems to be able to
withstand lower noise levels in most cases.

VI. USING CONCEPTS IN MOTION PLANNING TASKS

We also performed some tests on the real Franka Panda
robot using the learned f , as shown in Fig. 1. We used
unknown object instance segmentation [40] to segment out

the objects and 6-dof graspnet [39] to generate grasps.
For more details on the specific strategies used, see prior
work [9]. The user selected the concept to test. After objects
were segmented out, a user was prompted as to which object
should be moved. We generate goal positions for the moving
object using the Cross-Entropy Method (CEM) [33], using
the concept loss as the cost function. To encourage the model
to find object poses at reasonable orientations, we added a
quaternion-angle cost to the CEM optimization, similarly to
the metric used in prior work [41]. This is given as:

d(q1, q2) = λ (1− 〈q1, q2〉)

where q1 is the pose being optimized, q2 = I = (0, 0, 0, 1)
is an identity quaternion, and λ = 0.001 is a manually-tuned
weight. The models worked for finding object positions, even
on real-world data of previously unseen objects. In the future,
we would incorporate these concepts into a planner such as
that proposed in [9], so as to include the robot’s kinematic
constraints directly in the optimization process.

VII. DISCUSSION AND CONCLUSIONS

In this paper, we presented a method for learning relational
concepts with as little expert human interaction is possible.
Our approach quickly learns a concept in a low-dimensional
space, which is used to generate a large data set for training
in a high-dimensional space such as the robot’s sensor space.

While our results demonstrate that our concepts can be
used on a 7-DoF Franka Panda arm operating with real
sensor data, we still need to investigate how concepts taught
by real people would fare. Our noise analysis in Sec. V-C
suggests that limited random labeling noise might not affect
the results too much, but this type of noise might not be a
good model for how people make labeling errors. It could
also be interesting to study the trade-off between learning
accuracy and human burden for different types of queries.

Additionally, while we demonstrated our method in the
context of object relations for manipulation, we are excited
about future extensions to other types of concepts: many-
object concepts (“the cup is surrounded by plates”), order-
ing (“sorted from largest to smallest”), or even functional
relationships (support / concealment). We could extend our
method to any concepts where privileged information is
available at training time. For instance, we could learn an
acceptable speed threshold for manipulating objects: if the
privileged space contains poses between two frames, recov-
ering such a concept should be faster than when learning it
directly from sensor data.

Finally, it could be worthwhile to study modifications
to our training and query collection procedure to further
improve the quality of the data. For example, an iterative
version of our human query process could visualize examples
of the currently learned concept to assist the person in
deciding what new examples to give. Additionally, it would
be useful to consider “chaining” learned concepts together
(“mug upright and in front of the hammer”).



APPENDIX

A. Concept Objects

For data generation, we modified the objects in the
ShapeNet dataset [37] such that they are consistently aligned
and scaled. We selected objects commonly found in tabletop
manipulation tasks, like bowls, cereal boxes, cups, cans,
mugs, bottles, cutlery, hammers, candles, teapots, fruit, etc.
(see Fig. 8). The concepts above, abovebb, and near used
all the selected objects because they don’t involve object
affordances. For the concepts that involve affordances, we
selected subsets from the object set accordingly. For upright
and top, we used objects with evident upright orientations:
bottles, bowls, candles, mugs, cups, cans, milk cartons, pans,
plates, and teapots. For alignedhoriz we used objects that
can be horizontally aligned: calculators, can openers, cutlery,
hammers, pans, and scissors. For alignedvert we used objects
that can be vertically aligned: bottles, boxes, candles, cups,
milk cartons, and cans. For forward and front we used large
enough objects with clear fronts: hammers, pans, and teapots.

Fig. 8: We show the well-aligned and scaled ShapeNet objects we
used. We chose objects commonly found in manipulation tasks.

B. PCB Results for Demo Queries

In this section, we expand on the results in Sec. IV
by showing the case where the human provides the robot
with demonstration queries. We compare PCB to a baseline
that learns f directly from the queries. For PCB, we take
the g concepts we trained using both demonstration and
feature queries in Sec. V-A, and use them to label a large
set of 80,000 training states, resulting in Dφl

. Our method
then trains f using Dφl

, while the baseline trains the same
architecture using the original queries we used to learn g.
Importantly, both methods use well-balanced demonstration
queries. We report results on the same two metrics from Sec.
IV, Classification Accuracy and Optimization Accuracy.

Fig. 9 shows Classification Accuracy results. The base-
line actually performs well for above, abovebb, and near,
eventually reaching 80% performance. We think this happens
because for these concepts it is easy to infer the necessary
privileged information just from the positions of the point
clouds. For example, for near, given the position of the two

0

50

100 above abovebb near

0

50

100

A
cc

ur
ac

y

upright alignedhoriz alignedvert

100 500 10000

50

100 f orward

100 500 1000
Number of Queries

f ront

100 500 1000

top

PCB Baseline

Fig. 9: Classification accuracy on a held-out test data set (Clas-
sification Accuracy), for models trained on a varying number of
queries. Concepts trained using our PCB method (orange) correctly
classify at least 80% of the test data after the first 200 demo queries.
Meanwhile, the baseline (gray) struggles to perform better than
random, especially on the last six concepts that involve affordances.

0

50

100 above abovebb near

0

50

100

A
cc

ur
ac

y

upright alignedhoriz alignedvert

100 500 10000

50

100 f orward

100 500 1000
Number of Queries

f ront

100 500 1000

top

PCB Baseline

Fig. 10: Accuracy when optimizing object poses based on the
learned concepts (Optimization Accuracy). Our PCB method (or-
ange) produces satisfactory poses for most concepts, as opposed
to the baseline (gray) which sometimes cannot even surpass 25%
performance.

object point cloud centers, learning a relationship between
their distance and the concept value should not require
more than a few samples. The other concepts involve af-
fordances in addition to position information, which is much
more challenging to capture. As a result, the baseline can
barely achieve performance better than random. In contrast,
our method, which is able to generate thousands of high-
dimensional training data points, can successfully learn these
kinds of concepts, correctly classifying at least 80% of the
test data after the first 200 queries. Note that PCB with
demo queries reaches this accuracy faster than with the label
queries from Sec. IV, but demo queries are more effortful
to give than label queries. This shows the trade-off between
human effort and informativeness we investigated in Sec. V.

In Fig. 4, Optimization Accuracy results tell a similar story.
Our concepts can be optimized successfully with an accuracy
of over 50%, meaning that we would be able to find positions
for objects to satisfy these concepts [9]. Meanwhile, several
baseline concepts have a success rate barely above 25%.



REFERENCES

[1] O. Mees, N. Abdo, M. Mazuran, and W. Burgard, “Metric learning
for generalizing spatial relations to new objects,” in 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2017, pp. 3175–3182.

[2] A. Thippur, C. Burbridge, L. Kunze, M. Alberti, J. Folkesson,
P. Jensfelt, and N. Hawes, “A comparison of qualitative and metric
spatial relation models for scene understanding,” in Proceedings of
the Twenty-Ninth AAAI Conference on Artificial Intelligence, ser.
AAAI’15. AAAI Press, 2015, p. 1632–1640.

[3] T. Mota and M. Sridharan, “Incrementally grounding expressions
for spatial relations between objects,” in Proceedings of the 27th
International Joint Conference on Artificial Intelligence, ser. IJCAI’18.
AAAI Press, 2018, p. 1928–1934.

[4] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “Posecnn: A
convolutional neural network for 6d object pose estimation in cluttered
scenes,” 06 2018.

[5] M. Sundermeyer, Z.-C. Márton, M. Durner, M. Brucker, and
R. Triebel, “Implicit 3d orientation learning for 6d object detection
from rgb images,” in ECCV, 2018.

[6] X. Deng, A. Mousavian, Y. Xiang, F. Xia, T. Bretl, and D. Fox,
“Poserbpf: A rao–blackwellized particle filter for 6-d object pose
tracking,” IEEE Transactions on Robotics, vol. 37, no. 5, pp. 1328–
1342, 2021.

[7] C. Wang, R. Martı́n-Martı́n, D. Xu, J. Lv, C. Lu, L. Fei-Fei,
S. Savarese, and Y. Zhu, “6-pack: Category-level 6d pose tracker with
anchor-based keypoints,” in 2020 IEEE International Conference on
Robotics and Automation (ICRA), 2020, pp. 10 059–10 066.

[8] K. Kase, C. Paxton, H. Mazhar, T. Ogata, and D. Fox, “Transferable
task execution from pixels through deep planning domain learning,”
2020 IEEE International Conference on Robotics and Automation
(ICRA), pp. 10 459–10 465, 2020.

[9] C. Paxton, C. Xie, T. Hermans, and D. Fox, “Predicting stable
configurations for semantic placement of novel objects,” in Conference
on Robot Learning (CoRL), 2021, to appear.

[10] W. Yuan, C. Paxton, K. Desingh, and D. Fox, “Sornet: Spatial object-
centric representations for sequential manipulation,” 2021.

[11] S. Mukherjee, C. Paxton, A. Mousavian, A. Fishman, M. Likhachev,
and D. Fox, “Reactive long horizon task execution via visual skill and
precondition models,” in 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2020, pp. 5717–5724.

[12] B. D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey, “Maxi-
mum entropy inverse reinforcement learning,” in Proceedings of the
23rd National Conference on Artificial Intelligence - Volume 3, ser.
AAAI’08. AAAI Press, 2008, pp. 1433–1438.

[13] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse re-
inforcement learning,” in Machine Learning (ICML), International
Conference on. ACM, 2004.

[14] D. Hadfield-Menell, S. Milli, P. Abbeel, S. J. Russell, and A. Dragan,
“Inverse reward design,” in Advances in Neural Information Pro-
cessing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30. Curran
Associates, Inc., 2017.

[15] J. Choi and K.-E. Kim, “Bayesian nonparametric feature construction
for inverse reinforcement learning,” in Twenty-Third International
Joint Conference on Artificial Intelligence, 2013.

[16] P. Vernaza and D. Bagnell, “Efficient high dimensional maximum
entropy modeling via symmetric partition functions,” in Advances in
Neural Information Processing Systems, 2012, pp. 575–583.

[17] S. Levine, Z. Popovic, and V. Koltun, “Feature construction for
inverse reinforcement learning,” in Advances in Neural Information
Processing Systems, 2010, pp. 1342–1350.

[18] A. Bobu, M. Wiggert, C. Tomlin, and A. D. Dragan, “Feature
expansive reward learning: Rethinking human input,” in Proceedings
of the 2021 ACM/IEEE International Conference on Human-Robot
Interaction, ser. HRI ’21. New York, NY, USA: Association for
Computing Machinery, 2021, p. 216–224.

[19] A. Bobu, M. Wiggert, C. J. Tomlin, and A. D. Dragan, “Induc-
ing structure in reward learning by learning features,” CoRR, vol.
abs/2201.07082, 2022.

[20] C. Finn, S. Levine, and P. Abbeel, “Guided cost learning: Deep inverse
optimal control via policy optimization,” in Proceedings of the 33rd
International Conference on International Conference on Machine
Learning - Volume 48, ser. ICML’16. JMLR.org, 2016, p. 49–58.

[21] M. Wulfmeier, D. Z. Wang, and I. Posner, “Watch this: Scalable cost-
function learning for path planning in urban environments,” in 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2016, pp. 2089–2095.

[22] L. Shao, T. Migimatsu, Q. Zhang, K. Yang, and J. Bohg, “Con-
cept2robot: Learning manipulation concepts from instructions and
human demonstrations,” in Robotics: Science and Systems, 2020.

[23] J. Fu, K. Luo, and S. Levine, “Learning robust rewards with adverse-
rial inverse reinforcement learning,” in International Conference on
Learning Representations, 2018.

[24] S. Reddy, A. D. Dragan, and S. Levine, “SQIL: imitation learning
via reinforcement learning with sparse rewards,” in 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

[25] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and
P. Abbeel, “Infogan: Interpretable representation learning by infor-
mation maximizing generative adversarial nets,” in Proceedings of
the 30th International Conference on Neural Information Processing
Systems, ser. NIPS’16. Red Hook, NY, USA: Curran Associates Inc.,
2016, p. 2180–2188.

[26] I. Higgins, L. Matthey, A. Pal, C. P. Burgess, X. Glorot, M. M.
Botvinick, S. Mohamed, and A. Lerchner, “beta-vae: Learning basic
visual concepts with a constrained variational framework,” in ICLR,
2017.

[27] R. T. Q. Chen, X. Li, R. B. Grosse, and D. K. Duvenaud, “Isolating
sources of disentanglement in variational autoencoders,” in Advances
in Neural Information Processing Systems, S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds.,
vol. 31. Curran Associates, Inc., 2018.

[28] Y. Hristov, D. Angelov, M. Burke, A. Lascarides, and S. Ramamoorthy,
“Disentangled relational representations for explaining and learning
from demonstration,” in 3rd Annual Conference on Robot Learning,
CoRL 2019, Osaka, Japan, October 30 - November 1, 2019, Proceed-
ings, ser. Proceedings of Machine Learning Research, L. P. Kaelbling,
D. Kragic, and K. Sugiura, Eds., vol. 100. PMLR, 2019, pp. 870–884.

[29] A. Goyal, A. Mousavian, C. Paxton, Y.-W. Chao, B. Okorn, J. Deng,
and D. Fox, “Ifor: Iterative flow minimization for robotic object
rearrangement,” 2022.

[30] M. Cakmak and A. L. Thomaz, “Designing robot learners that ask
good questions,” in 2012 7th ACM/IEEE International Conference on
Human-Robot Interaction (HRI), 2012, pp. 17–24.

[31] S. Reddy, A. Dragan, S. Levine, S. Legg, and J. Leike, “Learning
human objectives by evaluating hypothetical behavior,” in ICML, 2020.

[32] E. Biyik, K. Wang, N. Anari, and D. Sadigh, “Batch active learning
using determinantal point processes,” CoRR, vol. abs/1906.07975,
2019.

[33] P.-T. De Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein, “A
tutorial on the cross-entropy method,” Annals of operations research,
vol. 134, no. 1, pp. 19–67, 2005.

[34] M. Kobilarov, “Cross-entropy randomized motion planning,” 06 2011.
[35] E. Wijmans, “Pointnet++ pytorch,” https://github.com/erikwijmans/

Pointnet2 PyTorch, 2018.
[36] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierar-

chical feature learning on point sets in a metric space,” in Advances
in Neural Information Processing Systems, 2017, pp. 5099–5108.

[37] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li,
S. Savarese, M. Savva, S. Song, H. Su, J. Xiao, L. Yi, and F. Yu,
“ShapeNet: An Information-Rich 3D Model Repository,” Stanford
University — Princeton University — Toyota Technological Institute
at Chicago, Tech. Rep. arXiv:1512.03012 [cs.GR], 2015.

[38] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Mack-
lin, D. Hoeller, N. Rudin, A. Allshire, A. Handa, and G. State,
“Isaac gym: High performance gpu-based physics simulation for robot
learning,” 2021.

[39] A. Mousavian, C. Eppner, and D. Fox, “6-DOF graspnet: Variational
grasp generation for object manipulation,” in International Conference
on Computer Vision (ICCV), 2019.

[40] Y. Xiang, C. Xie, A. Mousavian, and D. Fox, “Learning rgb-d feature
embeddings for unseen object instance segmentation,” in Conference
on Robot Learning (CoRL), 2020.

[41] W. Yang, C. Paxton, A. Mousavian, Y.-W. Chao, M. Cakmak, and
D. Fox, “Reactive human-to-robot handovers of arbitrary objects,” in
IEEE International Conference on Robotics and Automation (ICRA),
2021.

https://github.com/erikwijmans/Pointnet2_PyTorch
https://github.com/erikwijmans/Pointnet2_PyTorch

	I Introduction
	II Related Work
	III Method
	III-A Preliminaries
	III-B Learning a low-dimensional concept
	III-C Learning a high-dimensional concept
	III-D Implementation details

	IV Experiment: Learning perceptual concepts by bootstrapping from human queries
	IV-A Experimental Design
	IV-B Qualitative results
	IV-C Quantitative analysis

	V Analysis: learning low-dimensional concepts from different types of human queries
	V-A Benefits of Demonstration, Label, and Feature Queries
	V-B Active Query Labeling
	V-C Noise Ablation in Human Query Labeling

	VI Using Concepts in Motion Planning Tasks
	VII Discussion and Conclusions
	VII-A Concept Objects
	VII-B PCB Results for Demo Queries

	References

