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Abstract— As environments involving both robots and hu-
mans become increasingly common, so does the need to account
for people during planning. To plan effectively, robots must be
able to respond to and sometimes influence what humans do.
This requires a human model which predicts future human
actions. A simple model may assume the human will continue
what they did previously; a more complex one might predict
that the human will act optimally, disregarding the robot;
whereas an even more complex one might capture the robot’s
ability to influence the human. These models make different
trade-offs between computational time and performance of the
resulting robot plan. Using only one model of the human either
wastes computational resources or is unable to handle critical
situations. In this work, we give the robot access to a suite
of human models and enable it to assess the performance-
computation trade-off online. By estimating how an alternate
model could improve human prediction and how that may
translate to performance gain, the robot can dynamically switch
human models whenever the additional computation is justified.
Our experiments in a driving simulator showcase how the robot
can achieve performance comparable to always using the best
human model, but with greatly reduced computation.

I. INTRODUCTION

When robots operate in close proximity to humans, it is
crucial that they anticipate what people will do to respond
appropriately. Such prediction often involves equipping the
robot with a model of human behavior [1]. This model could
be physics-based [2]–[4], pattern-based [5]–[8], approximate
rationality with respect to an objective function [9]–[17], or
even two player games [18]–[21].

What human model a robot should be equipped with
depends on the trade-offs it needs to make: some models,
like the physics-based ones, are cheap to compute but don’t
capture human intentions and may be less accurate; others,
like two player games, model interactions between the person
and the robot, but at a high computational cost. For systems
interacting with people in real time, like autonomous ve-
hicles or mobile robots, compromising on either accuracy
or computation is undesirable. For instance, in the driving
scenario in Fig. 1, using the cheap model might pose a
safety hazard, while picking the more accurate one may limit
planning frequency or strain computational resources needed
elsewhere (sensor suite, perception system, routing, etc).

We advocate that the robot should not be stuck with a sin-
gle model, but instead have the ability to dynamically change
which model it is using as the interaction progresses. In Fig.
1, the robot starts off with the cheap model. Anticipating
a potential collision, it switches to a more complex model,
reverting back once the critical maneuver is complete.
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Fig. 1: The robot (orange car) can plan with either a complex
model (yellow bubble) of the human (blue car) that is more
accurate but more expensive or with a simple model (purple
bubble) that is not as accurate but cheaper. Our algorithm
uses the complex model when a collision is imminent (solid
yellow line), but saves computation by switching to the
simple one afterwards (solid purple line).

The idea of using multiple predictive models is not new;
most works, like interactive multiple model filtering [22]–
[25] or other ways of combining models [25] are focused on
improving accuracy by leveraging complementary strengths
of different models. In contrast, we are focused on the setting
where we have complex but accurate models (which could
be mixtures themselves), and cheap but less accurate ones. In
such settings, if it weren’t for computational costs, we would
use the complex models all the time. The question becomes:
when is the performance gain worth the extra computation?

We could plan with the complex model and measure the
performance gain, but doing so defeats the purpose of saving
computation. To avoid this, prior work proposed training a
model to predict which agents “influence” or “affect” the
planner, and prioritizing computation for them [26]. This
approach does not estimate the performance-computation
trade off, but heuristically assumes that agents who influence
the planner are conducive to high gain. However, there is
a fundamental difference between needing to consider an
agent at all, and estimating the performance gain between
predicting their behavior using a cheap versus a complex
model. For example, in Fig. 1, a cheap model is sufficient in
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the leftmost and rightmost frames where a critical maneuver
is not necessary, despite the human influencing the planner.

Instead of heuristically allocating computation, we employ
efficient, online estimation for how an alternate human model
could change robot performance. This enables switching to
the model which best trades off reward and computation in
real time. In Fig. 1, a car using our switching methodology is
able to achieve a behavior similar to the one produced with
the most accurate model, but at a computational cost closer
to that of the cheaper model.

This paper makes three key contributions: (1) a formalism
for the robot’s decision process that optimally trades off
between computation and accuracy across multiple predic-
tive models, (2) an approximate solution that solves this
decision process online, and (3) a comparative analysis
of our model switching algorithm in a human-autonomous
car system. Together, these contributions give robots the
autonomy to decide in real-time what predictive human
models are most appropriate to use in different interactive
scenarios. Code and videos are made available at arjunsripa-
thy.github.io/model switching

II. METHOD

We focus on a system consisting of a robot R interacting
in an environment with other human agents H . The robot’s
goal is to plan around the humans in a manner that is most
effective while minimizing computational time. We present
our theory for a general single human, single robot setting
where the other agents’ behavior is known, although our
method can easily be extended by running it separately for
each human. We use the running example of an autonomous
car sharing the road with a human driver to illustrate the
proposed approach and demonstrate the utility of our method.

A. Problem Statement

We model the system as a fully observable dynamical
system in which one agent’s controls potentially impact the
other’s. As such, let the state x ∈ X include the positions and
velocities of both agents, where the human action uH ∈ UH
and robot action uR ∈ UR each can affect the next state in
a combined dynamics model: xt+1 = f(xt, utR, u

t
H).

Let x = [x1, . . . , xN ] be a finite horizon N state se-
quence, uR = [u1

R, . . . , u
N
R ] the robot’s continuous control

inputs, and uH = [u1
H , . . . , u

N
H ] the human’s. The robot

optimizes its controls uR according to a reward function
that depends on the joint sequence of states and controls:
RR(x0,uR,uH) =

∑N
τ=1 rR(xτ , uτR, u

τ
H), where x0 is the

starting state and each state thereafter is obtained via the
dynamics model from the previous robot and human controls.
The person chooses their action at time t, utH , according to
an internal policy πH(xt, utR), which, when applied at every
state xt, results in uH . We let uR and uH represent the true
executed robot and human controls, respectively.

Our system is a Markov Decision Process (MDP) with
states X , actions UR, transition function f(x, uR, uH), and
reward rR(x, uR, uH). Since the robot does not know πH
(that would require access to the human’s brain), it uses a

human model M : X × UNR → UNH to make a prediction
of the human controls ūH . The robot then seeks a plan
ū0
R(M) := ūR(x0,M) that maximizes the MDP reward RR

based on the predicted ū0
H(ūR,M) := ūH(x0, ūR,M).

Unfortunately, this type of offline planning doesn’t con-
sider modeling errors introduced by imperfect models M .
Hence, it is more common for the robot to perform online
planning at every time step t to obtain more accurate plans
ūtR(M). For computational efficiency, we follow [18] and
use Model Predictive Control (MPC) [27] with a finite
horizon K < N , where at each time step t the robot
optimizes its controls to maximize the cumulative reward:

ūtR(M) = arg max
uR

RR(xt,uR, ū
t
H(uR,M)) , (1)

where RR is evaluated only over the first K states starting at
xt. The robot executes the first action from its plan and then
replans at the next time step t+ 1. To simplify notation, we
will denote the first action of a plan as ūtR(M) := ūtR(M)[0].

The crucial question is what human model M should the
robot use for planning with Eq. (1)? Restricting ourselves to
any single model either hurts performance or computational
efficiency. We propose an algorithm which enables efficient
switching between models of varying accuracy and complex-
ity, allowing for both high performance and low computation.

B. Model Switching Formalism

We assume the robot has access to a ladder of human
models M = {M0, . . . ,Mn}, where as we climb the ladder
we sacrifice computational time for greater expected reward:
Ex[RR(x, ūR(Mj),uH)] ≥ Ex[RR(x, ūR(Mi),uH)] and
T (Mj) > T (Mi),∀i < j, where T (M) is the time to solve
Eq. (1) under M .

At every time step t, the robot needs to choose the human
model M t ∈ M to use for planning ūtR. To determine
which model the robot should use at time t, we construct
a meta MDP on top of the previous MDP, with states
xt, actions M t ∈ M representing the choice of human
model, transition function f(xt, ūtR(M t), utH), and meta-
reward rtmeta = rR(xt, ūtR(M t), utH) − λ ∗ T (M t), with λ
trading off actual reward gained by planning under M t and
computational time spent on the plan. Lower values for λ
favor more complex models, whereas higher values result in
more usage of less expensive ones.

Solving this MDP exactly is impossible, since it requires
access to the true human controls uH ahead of time.
Moreover, even if we approximate the true human controls
with those predicted by our most accurate model Mn, the
robot needs to find the model sequence that maximizes the
cumulative meta reward across the episode—a procedure
exponential in the episode horizon and, thus, intractable. We
could alleviate this computational burden by assuming the
robot myopically decides when to switch models: instead of
considering the cumulative meta reward, only look at rtmeta
to decide whether to switch at time t+1. On the plus side, this
simplification is more tractable and only needs the current
human control. Unfortunately, even this relaxation requires
planning with every model and picking the one with the best
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rtmeta, which is worse than simply using Mn from the get-go.
Thus, we now propose an approximate solution that avoids
computing every plan while still switching models as needed.

C. Approximate Solution: Switching between Two Models

For ease of exposition, we first discuss how the robot can
decide whether to switch from a simple model M1, used
for planning at timestep t, to a complex model M2, which
we are considering for timestep t + 1. We are interested in
estimating the reward the robot would gain from using M2.
Estimate Change in Robot Plan

Leveraging our plan computed at timestep t using M1, we
get around explicitly generating ūtR(M2) by approximating
it as ûtR(M2) = ūtR(M1) + ∆ûR. Here, we want to choose
∆ûR such that it maximizes the robot reward RR under the
complex model M2. However, optimizing ∆ûR using Eq. (1)
is equivalent to planning. To get an efficient estimate, we
use a quadratic Taylor series approximation of RR, denoted
R̃R, evaluated around (xt, ūtR(M1), ūtH(ūtR(M1),M1)), our
current plan and human prediction:

∆ûR = arg max
∆uR

R̃R(xt, ûtR(M2), ūtH(ûtR(M2),M2)) .

(2)
Estimate Change in Human Prediction

Eq. (2) requires approximating the M2 human’s response
ūtH to the robot’s plan ûtR(M2), which can be broken
down into M2’s response to the current plan ūtR(M1)
plus the change coming from ∆ûR: ûtH(ûtR(M2),M2) =
ûtH(ūtR(M1)+∆ûR,M2). We can linearly approximate this:

ûtH(ûtR(M2),M2) = ūtH(ūtR(M1),M2) +
dûH
dûR

·∆ûR ,

(3)
where dûH

dûR
= dûH(ûR,M)

dûR

∣∣∣ûR=ūt
R(M1)

M=M2

. This requires eval-

uating the complex model M2, which might be expensive,
though not nearly as expensive as planning with it.

We may now substitute the changed robot plan ûtR(M2)
and the changed human prediction from Eq. (3) into our
reward expression we maximize in Eq. (2)

R̃R(xt, ūtR(M1)+∆ûR, ū
t
H(ūtR(M1),M2)+

dûH
dûR

·∆ûR) .

(4)
Performance Gain from the Change in Robot Plan

Ultimately, to assess the robot’s performance gain by
using M2, we want to estimate the reward component
of rtmeta under M2, rR(xt, ûtR(M2), ūtH(ûtR(M2),MH)),
where ūtH(ûtR(M2),MH) would be the human’s response
under the true model MH to the robot’s plan with M2, and
ūtH(ûtR(M2),MH) is the first control of that response. To
simplify notation, we will denote this reward rtR(M2).

Since our approximation of the meta MDP considers
myopic rewards rR, we really are only interested in the
first control ûtR(M2) of the changed plan ûtR(M2), and the
first control ūtH(ûtR(M2),MH) of the true human’s response
to that plan. Given ∆ûR, we only need the change for
the first control ∆ûR combined with the approximation of

ūtH(ûtR(M2),MH) as in Eq. (3) to estimate r̂tR(M2) as:

rR(xt, ūtR(M1) + ∆ûR, ū
t
H(ūtR(M1),MH) +

dûH
dûR

·∆ûR) ,

(5)
where dûH

dûR
= dûH(ûR,M)

dûR

∣∣∣ûR=ūt
R(M1)

M=MH

. Here, we don’t know

MH , but we can approximate it with the complex model M2.
One Time Step Simplification

All of this requires evaluating the complex model M2

at the current plan ūtR(M1), which, although cheaper than
fully planning with M2, is still expensive. Since the meta
reward only evaluates the first control of the plans, we can do
better by simplifying our formulation further to planning and
predicting a single control. That is, we consider the changed
control ûtR(M2) = ūtR(M1) + ∆ûR, with its corresponding
changed human control prediction from Eq. (3):

ûtH(ûtR(M2),M2) = ūtH(ūtR(M1),M2)+
dûH
dûR
·∆ûR , (6)

where dûH

dûR
= dûH(ûR,M)

dûR

∣∣∣ûR=ūt
R(M1)

M=M2

.

We obtain ∆ûR by optimizing the following objective:

arg max
∆uR

r̃R(xt, ûtR(M2), ūtH(ūtR(M1),M2)+
dûH
dûR
·∆uR) .

(7)
Our simplified derivation still requires the gradient dûH

dûR
, but

this is cheaper to compute than dûH

dûR
.

Armed with an estimated r̂tR(M2) from Eq. (5), we can
now determine whether the performance gain from M2 is
worth the additional compute by considering

∆rtmeta = r̂tR(M2)−λ ∗T (M2)− (rtR(M1)−λ ∗T (M1)) ,
(8)

where we already know rtR(M1) from the previous time step,
and T (M1) and T (M2) are known a priori from their model
specifications. If ∆rtmeta is positive, the robot should switch
to M2; otherwise, the robot should continue using M1.
Intuitive Interpretation

In Eq. (8), since T ’s are constants, the robot’s decision
of whether to switch relies on comparing rtR(M1) =
rR(xt, ūtR(M1), ūtH(ūtR(M1),M1)) to r̂tR(M2) =
rR(xt, ūtR(M1) + ∆ûR, ū

t
H(ūtR(M1),M2) + dûH

dûR
· ∆ûR).

Looking at these rewards, a few key distinctions stand out.
First, the robot is interested in knowing whether M2 would

give a different prediction ūtH(ūtR(M1),M2) than M1’s
ūtH(ūtR(M1),M1) on the current plan. For example, in Fig. 1
we realize a more complex model foresees the human turning
into the bottleneck compared to naive constant velocity. Here
this foresight prevents a collision.

Meanwhile, the derivative dûH

dûR
captures the influence that

the robot’s controls have on the human’s. Simple models may
ignore this, but more complex models, like the two player
game, capture this dynamic enabling certain critical maneu-
vers. For instance, humans will yield should the robot merge
to create proper spacing. Only if aware of this influence will
the robot feel confident merging into tight windows.

So how much do these two terms matter? Intuitively, by
computing ∆ûR via Eq. (7), we see how much a model



Algorithm 1: Dynamic Model Switching
Input: Ladder M = {M0, . . . ,Mn}, episode time N .
Start with time t = 0, current model index i.
while t ≤ N do

Compute ūtR(Mi) given xt and execute ūtR(Mi).
if i < n then

Substitute (M1,M2)← (Mi,Mn) in Eq. (5),
(7), (8), with ūtH(ūtR(Mi),Mn)← utH .

Compute ∆rtmeta using Eq. (5), (7), (8).
if ∆rtmeta > 0 then

i← n (Switch up), continue
if i > 0 and cooldown complete then

Substitute (M1,M2)← (Mi,Mi−1) in Eq.
(5), (7), (8).

Compute ∆rtmeta using Eq. (5), (7), (8).
if ∆rtmeta > 0 then

i← i− 1 (Switch Down).

that either captures influence or makes different predictions
affects the robot’s plan. If neither bears much weight, then
∆ûR will likely be negligible and we will not switch. If
however ∆ûR is significant, we further evaluate if that
translates to significant performance gain. Only when that’s
the case will we ultimately switch.

D. Approximate Solution: Switching Between the Ladder

Although we presented our method in the context of
switching up, the framework holds when M1 is the current
model and M2 is any alternative: higher or lower. When
the alternate model is lower the question becomes: is the
computational saving worth the loss in reward? Generalizing
our derivation to a ladder of models M = {M0, . . . ,Mn},
suppose that at time t the robot used model Mi to plan
ūtR(Mi). We would like to decide on a model for time t+1.

First, we evaluate if it’s worthwhile to switch to a higher
model Mj , j > i. The robot could consider Mi+1, the
model immediately above, and successively switch up. How-
ever, in urgent, safety-critical situations we may need to
switch higher than that immediately to avoid an accident.
Thus, we exclusively consider the best model and upper
bound r̂tR(Mj) with r̂tR(Mn), the estimated reward from
using the best model available. To avoid having to evaluate
Mn’s expensive predictions we substitute a perfect prediction
ūtH(ūtR(Mi),MN ) ≈ utH . This effectively upper bounds Mn

with the true human model MH .
If the robot should have switched down to Mj , j < i,

we observe that rtR(Mj) ≤ rtR(Mi−1) ≤ rtR(Mi). Thus,
for efficient switching, we only consider the model directly
below, Mi−1. Since T (Mi−1) < T (Mi), it is reasonable to
compute true model predictions in our approximation.

Finally, if ∆rtmeta is positive for MH , the robot switches
up to Mn. Otherwise, if ∆rtmeta is positive for Mi−1,
the robot switches down to Mi−1. Otherwise we stay as
summarized in Algorithm 1.

In practice evaluating Mi−1’s predictions can still be
significant, but unlike switching up, safety and performance

concerns do not force us to check every timestep. One
may wait K timesteps after failing to switch down before
trying again. This cooldown hyperparameter, K, should be
set based on how often one actually switches.

III. EXPERIMENTS

We now demonstrate the efficacy of our model switching
algorithm in three simulated autonomous driving scenarios.

A. Driving Simulator

We model the dynamics of the vehicles as a 4D bicycle
model. Let the state of the system be x = [x y θ v]T , where
x, y are the coordinates of the vehicle, θ is the heading, and
v the speed. The actions are u = [ω a]T , where ω is the
steering input and a is the linear acceleration. We use α as
the friction coefficient, and the vehicle’s dynamics model is:

[ẋ ẏ θ̇ v̇] = [v · cos(θ) v · sin(θ) v · ω a− α · v] . (9)

B. Human Predictive Models

For our experiments, we use the following 3 models of
varying computational complexity and accuracy:

1) Constant Velocity: This model, deemed Naive, predicts
that the person will provide zero acceleration control, main-
taining their current heading and speed.

2) Human Plans First: This model assumes that the
person acts according to a reward function parameterized
as a linear combination of features φ: RH(x0,uR,uH) =∑N
τ=1 rH(xτ , uτR, u

τ
H) =

∑N
τ=1 θ

Tφ(xτ , uτR, u
τ
H). Addi-

tionally, under this model the human believes that the robot
will maintain a constant velocity, and optimizes their reward
w.r.t the imagined robot plan ũR to obtain a plan ūH :

ūH(x0, ũR) = arg max
uH

RH(x0, ũR,uH) . (10)

We refer to this model as Turn because the person takes the
first turn in choosing their controls.

3) Cognizant of Effects on Human Action: Our last model
is based on [18] and models the human as an agent which
will optimally respond to the robot’s plan. This results in a
nested optimization as the robot accounts for how its plan
affects the human’s. As we rationalize the human’s thought
process we refer to this model as “Theory of Mind” [28], or
ToM for short.

Planning with the first two approaches involves optimiz-
ing the robot’s control against the fixed human prediction.
Meanwhile, ToM’s nested optimization returns both a human
and robot control with no further optimization required. From
our experiments, planning using Turn and ToM takes roughly
twice and four times as long as using Naive, respectively.
However, their expected accuracy has the reverse ordering.

Both Turn and ToM rely on knowing a reward parameter
θ and a set of features φ for the human reward. To learn a
good θ for every scenario, we collected demonstrations of
a single human driver in an environment with multiple au-
tonomous cars following precomputed routes, and performed
inverse reinforcement learning [29]. The base features we
used include higher speed moving forward (against a speed



Fig. 2: (Top) Average single step computation time over the course of Stay Back (left), Merger (center), and Give Way (right),
for a conservative, lesser λ, switcher (yellow) and an aggressive, larger λ, one (light blue). (Bottom) Example conservative
MS robot (orange) behavior around the target human (blue) and other cars (black).

limit), lateral and directional alignment in the lane, collision
avoidance, and distance to the boundaries of the road.

Across our experiments, we compare each of these three
models against our model switcher (MS) that dynamically
chooses between all of them. We additionally wanted to
analyze different performances for designers that might be
more or less conservative about the reward vs. computation
tradeoff, so we show results for different values of λ.

C. Miscellaneous Experimental Details

We conduct experiments using TensorFlow [30] 2.1, run-
ning on a 2015 MacBook Pro, for gradient calculation and
optimization. All planners optimize for a horizon T = 5
using 20 vanilla gradient descent steps. For switching down,
we used a cooldown of K = 3. In Eq. (2), the quadratic
approximation may be ill conditioned, so we restricted ∆uR
to exist within some reasonable bounds.

D. Evaluation Strategy

For every scenario, we run every method against the same
simulated human driver. For diversity, we vary the starting
positions of the human and robot cars across 30 different
seeds per scenario. For every time step, we keep track of the
reward and computation time.

In Fig. 2 we visualize average combined planning and de-
cision time for the MS as it progresses through each scenario.
Further, we juxtapose a conservative designer (yellow), who
values reward relatively more, with an aggressive one (blue),
who prefers computational savings. Snapshots below provide
context for key points of the experiment denoted by dashed
lines above, taken from a single conservative MS run.

In Fig. 3, we showcase the average reward and computa-
tional time per episode, averaged across seeds. In each plot,
the left bars represent computational time, and the right ones
reward, in units given by the left and right axes respectively.
Within the total computational time, we separate planning
and time deciding a human model.

We hypothesized that our MS algorithm would maintain
a reward similar to that of the top model, while being
significantly cheaper to compute. Additionally, we expected

to see that conservative switchers obtain better rewards than
aggressive switchers, but at higher computational complexity.

Note that because we wanted to showcase regions where
a conservative switcher would react differently from an
aggressive one, the hyperparameter λ varies widely across
our scenarios. This is a reflection of differing reward scales,
and in general the designer would have to select an ap-
propriate λ depending on the problem and desired reward-
computation tradeoff. For greater stability and generalization,
one may find a highly conservative λ to be effective, reducing
switching sensitivity to situations where the human has little
bearing on the reward.

E. Scenario 1: Stay Back

In our first scenario in Fig. 2 (left), the robot and human
begin driving alongside each other at the same speed. Ahead
a series of cones creates a bottleneck in the road. Either the
robot or human must yield to avoid a collision.

For this scenario, we restrict ourselves to Naive and Turn
for simplicity, while the other two will showcase the potential
of a broader model ladder. As shown in Fig. 3 (left), the
Naive model struggles to correctly anticipate whether the hu-
man will go first and act accordingly, but it is much cheaper
than Turn which safely navigates the scenario. Meanwhile,
both aggressive or conservative switchers manages to obtain
rewards close to that of the Turn, but with computational
time closer to Naive. Additionally, notice that the decision
time doesn’t add excessive overhead, which underlines the
efficiency of our approximation to the meta MDP.

In Fig. 2 (left), we see that a conservative switcher (λ =
0.4) will generally use Turn before and during the bottleneck,
whereas an aggressive one (λ = 5.0) uses Turn only to
intervene when using Naive is headed towards a collision.

F. Scenario 2: Merger

In the next scenario shown in Fig. 2 (middle), the robot
would like to merge into the left lane. The gap is too small
for the robot, but if it gradually angles its hood the target
human will yield allowing the robot to enter.



Fig. 3: Average computational time and reward for the 3 scenarios, with models ordered by computation. Model switchers
achieve comparable performance to the best model with less computation. Note: the aggressive switchers with greater values
for λ are to the left of the conservative ones.

As shown in Fig. 3 (middle), only ToM is able to anticipate
that the human will yield should it begin entering the
lane. However, before and after merging, ToM provides no
further advantage, so the switcher can exploit that to reduce
computational complexity.

In Fig. 3 (middle), we see that both the conservative
and aggressive switchers obtain rewards closer to ToM, but
with significantly less total computation. In Fig. 2 (middle),
we see that the model switcher only uses ToM for merg-
ing, as it provides no comparative advantage afterwards. A
conservative model switcher (λ = 0.1) switches up earlier
merging faster, whereas an aggressive one (λ = 0.6) switches
later but requires less computation. Delaying an inevitable
switch hurts the aggressive MS, highlighting the importance
of a conservative λ for safety-critical applications Turn is
used sparingly during the transition as it provides little
comparative advantage to Naive.

G. Scenario 3: Give Way

In our last scenario shown in Fig. 2 (right), the person
is driving alongside the robot and would like to enter the
robot’s lane; however, other drivers around the robot do not
allow enough space either way. The robot would like to help
the human enter. Of course, the robot may create sufficient
space by moving forward or backing up.

As shown in Fig. 3 (right), ToM is the only one capable
of understanding the robot’s ability to help the person to
merge. Turn occasionally succeeds when it yields fearing a
collision. Both switchers obtain higher rewards than those of
the cheaper models, but we notice again a large gap between
the two.

The earlier the robot makes space for the person, the
better. A conservative model switcher (λ = 0.01) quickly
switches up and allows the human to enter, albeit slower
than pure ToM. A more aggressive switcher (λ = 0.03)
delays the switch to ToM resulting in lesser reward, but keeps
overall computation lower. The delay between yielding and
the human entering presents a challenge for our myopic,
one time step, reward simplification. A very low λ works
here, but the issue of myopic gain potentially underestimating
longer horizon gain remains.

IV. DISCUSSION

Summary: In this paper, we formalized the robot’s deci-
sion making process over which predictive human model to
use as a meta MDP. We introduced an approximate solution
that enables efficient switching to the most suitable available
model within this MDP. The resulting decisions maintain
rewards similar to those of the best model available, while
dramatically reducing computational time.

Future Work: Because the robot cannot see the human’s
true future controls, we were limited to basing switching
decisions on what the person did in the past. We could
approximate the true human trajectory using the top model’s
prediction, but that would relinquish most computational
savings. For example, Naive planning and Turn prediction
takes as long as Turn planning. Additionally, because the
decision to switch relies on a single time step simplification,
our scenarios needed consistent reward signal. Future work
must address adapting our algorithm to sparse reward settings
where one step reward gradients are not meaningful. Learn-
ing a value function to replace reward in our formulation
would be an interesting direction.

Moreover, all this work happened in a simple driving
simulator, albeit with what we think are complex scenarios.
To put this on the road, we will need more emphasis
on safety, as well as longer decision horizons. Lastly, our
algorithm focuses on single human decisions. We could run
our method separately for every nearby human, evaluating
the differential benefit of switching each, but we are yet to
conduct experiments in that setting. Alternatively, we can
imagine adapting it to multiple humans by either adding more
complex multi-player game theoretic models, or combining
it with the prioritization schema presented by [26].

Conclusion: Despite these limitations, we are encouraged
to see robots have more autonomy over what human models
to use when planning online, without hand-coded heuristics.
We look forward to applications of our model switching ideas
beyond autonomous driving: to mobile robots, quadcopters,
or any human-robot interactive scenarios where planning
with multiple predictive human models might be beneficial.
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